

Evaluation of scenarios for an energy, economic and social transition of the Fessenheim region (ESTEES project)*

Florian Labaude¹, Nadège Blond¹, Thierry de Larochelambert² ¹Laboratoire Image Ville Environnement, Strasbourg, France. ²Laboratoire FEMTO-ST, Besançon, France.

> * Evaluation de scénarios pour une transition énergétique, économique et sociale de la région de Fessenheim (projet ESTEES)

"Energy transition" Session

International Symposium of LabEx DRIIHM Inter-Disciplinary Research Facility on Human-Environment Interactions - ANR-11-LABX-0010

June 5th-7th, 2023 – Strasbourg (France)

Summary

- Context
- Project objectives
- Research methodology
- Energy analysis & planning tool EnergyPLAN
- Reference scenario and validation
- Energy transition scenarios 2030
- Towards Renewable Smart Energy Systems by 2050

Context

- Fessenheim NPP decommissionning
 - \rightarrow sustainable energy conversion of the territory 2020 2050
- global warming accelerating
- energy and geopolitical crises

Main guidelines

- (1) drastically reduce energy and material consumption = **sufficiency**
- (2) change the energy system : **renewable**, **resilient**, **efficient**, **sectorial-storage coupling**

Energy-climate pathways 2030-2050 of the Fessenheim territory

- (1) structural energy system changes \rightarrow climate neutrality
- (2) energy investment and costs pathways (holistic vision)
- (3) socio-economic, environmental and health benefits

Project Objectives

- developing a permanent and accurate energy-climate data-base of the Haut-Rhin department
 - structure
 - construction methodology for further updates and simulations
- **simulating** possible transformations of the **energy system**
 - Reference scenario 2018 simulation validation
 - Transition scenarios 2030 & 2050 assumptions and parametric design – simulations
- comparing with official regional schemes
- \rightarrow cost analysis
- \rightarrow planning recommendations
- \rightarrow publications

Research methodology

Energy analysis & planning tool EnergyPLAN

Scientific litterature

- > 400 references (mentioned, reviewed or considered)
- > 300 applications
- used worldwide (all continents)
- different scales (local, national, international)

Characteristics

- holistic (electricity, heating, industry, transport, GES)
- hourly simulation over a year
- classical/Smart Energy System
- storage & sector coupling
- optimization strategies
- fast
- variability demand/production
- balancing heat & electricity
- technical/economic optimization
- present and future technologies

 \rightarrow Energy Planning Dpt, University Aalborg (since 1999)

Energy analysis & planning tool EnergyPLAN

Steps from Jakob Zinck Thellufsen, Aalborg University

Reference scenario and validation

Reference scenario and validation

Haut-Rhin department

reference scenario -	validation E	nergyPLAN	
Fuel consumption (GWh/year)	ATMO GE	EnergyPLAN	Relative difference
Oil	8069	8070	0.0%
Natural gas	7167	7542	5.2%
Total	15236	15612	2.5%
CO2 emissions (ktCO2)	ATMO GE	EnergyPLAN	Relative difference
Oil	2114	2150	1.7%
Natural gas	1913	1993	4.2%
Total	4027	4143	2.9%
Electricity import/export (GWh/year)	ATMO GE	EnergyPLAN	Relative difference
	9 235	9526	3.1%
Renewable electricity production (GWh/year)	ATMO GE	EnergyPLAN	Relative difference
River Hydro	3080	3068	0.4%
PhotoVoltaic	63	62.7	0.5%

Source : Invent'air 2022 ATMO Grand Est

Reference scenario and validation

Hourly simulations

- district heating demand/production/storage
- electricity demand/production/balance
- gas demand/balance

-

Energy transition scenarios 2030

SRADDET

Regional plans for spatial planning, sustainable development, territorial equality

- energy and climate goals
- more ambitious or equal to national strategies
- regional strategy
- general but not prescriptive guidelines
- do not detail pathways

Challenges

- local territory adaptation (Haut-Rhin)
- energy structure changes (production, regulation, storages, etc.)
- cross sectorial integration
- transport decarbonation
- Regulation
- RE production choice

Assumptions for reference scenario 2030

- following the main guidelines of the SRADDET
- no structural change
- sectorial consumption reduction considered
- final consumptions unchanged base scenario SRADDET/EnergyPLAN

Energy transition scenarios 2030

	bas	base scenario SRADDET 2030 EnergyPLAN					
Haut-Rhin department		Balancing Heat = reference	Balancing Heat & Electricity	Difference			
	Electricity import (GWh/an)	1691	1691	0.00%			
	Electricity export (GWh/an)	528	499	-5.49%			
	Gas and biomass consumption (GWh/an)	8115	8082	-0.41%			
	CO ₂ emissions (kt/an)	2236	2235	-0.04%			

Towards Renewable Smart Energy Systems by 2050

Smart Energy Systems concept sector couplings (electricity, heating, cooling, gas, transport) + multi-energy, multi-scale storage coupling + DHC-CHP + intelligence (flexibility, metering, regulation, optimization)

Smart Energy Systems objectives

- \rightarrow maximize energy efficiency
- \rightarrow maximize RE penetration (up to 100%)
- ightarrow minimize electricity excess and costs
- → resilient system (hourly balanced electricity, heating, cooling, gas)

Towards Renewable Smart Energy Systems by 2050

Detailed energy-GHG strategy

- effective carbon neutrality (elimination of GHG emissions)
- energy sufficiency + efficiency objectives -55% / 2012
- > 100% RE supply with local productions + RE exchanges with surroundings + interconnections
- overall Smart Energy System implementation (CHP, DHC, couplings, storages)
- maximizing thermal renewable productions (solar thermal, geothermies)
- minimizing biomass production (sustainable use)
- optimizing seasonal solar thermal storage for District Heating & Cooling
- maximizing ecological transport (pedestrial, cyclist, tram, train)
- electrifying public and individual transports (trams, trains, busses, vehicles, trucks, ferries, barges)
- maximizing V2G storage, battery storage → minimizing transmission lines, backup units → maximizing grid stability
- hourly heating, cooling, electricity, gas balance

Evolutive energy-GHG data-base

- new renewable supply capacities
- new thermal, electricity, methane, hydrogen storage capacities (daily, weekly, seasonal scales)
- new distribution-conversion units (DHC, CHP, HP, electrolysers)

Scenario 2050 simulations

 \rightarrow costs comparison of numerous RSES structures \rightarrow investment & decision planning tool

work in progress

work in progress

work in progress

Thank you for attention

Florian Labaude¹, Nadège Blond¹, Thierry de Larochelambert² ¹Laboratoire Image Ville Environnement, Strasbourg, France. ²Laboratoire FEMTO-ST, Besançon, France.

> florian.labaude@etu.unistra.fr nadege.blond@live-cnrs.unistra.fr thierry.larochelambert@femto-st.fr

"Energy transition" Session

International Symposium of LabEx DRIIHM Inter-Disciplinary Research Facility on Human-Environment Interactions - ANR-11-LABX-0010

June 5th-7th, 2023 – Strasbourg (France)